
METAFONT for Beginners

Third Draft, Revision ‘U’

(17:40 GMT +10:00 Fri 27 August 1993)

Geoffrey Tobin (ecsgrt@luxor.latrobe.edu.au)

Contents

Scope 3

Where you can obtain this file 3

Reference 3

Acknowledgements 4

Motivation 4

1 What is METAFONT? 4

2 Getting METAFONT’s Attention 6

2.1 Typing at METAFONT’s ‘**’ prompt . 6
2.2 Typing on the Command Line . 6
2.3 ‘Please type another input file name: ’ 7

3 Base files 8

3.1 The plain base . 8
3.2 Loading a Different Base . 8
3.3 The Linkage Trick . 9
3.4 Making a Base; the Local Modes file . 10

4 Fonts 11

4.1 Proof Mode . 11
4.2 Localfont Mode . 11
4.3 Font Naming . 11
4.4 Using a New Font in TEX . 12
4.5 Magnification (and Resolution) . 12
4.6 GFtoPK . 12
4.7 Storing the Fonts . 13
4.8 Environment Variables for emTEX and web2c . 14

5 Some Limitations of METAFONT 15

1

6 What Went Wrong? 16

6.1 Big fonts, but Unwanted . 16
6.2 Consequences of Some Typing Errors on METAFONT’s command line 17
6.3 Finding the Fonts . 18
6.4 MakeTeXPK . 19
6.5 Strange Paths . 20

7 METAFONT Mail List 20

8 Conclusion 21

2

Scope

This is not a tutorial on METAFONT. It is an attempted description of how some of the pitfalls
in running the program may, hopefully, be avoided.

Where you can obtain this file

METAFONT for Beginners can be obtained by ftp from the CTAN (Comprehensive TEXArchive
Network) sites:

ftp.uni-stuttgart.de : soft/tex

ftp.tex.ac.uk : pub/archive

ftp.shsu.edu : tex-archive

in the

documentation

subdirectory, as the file

metafont-for-beginners.tex

Also from:

niord.shsu.edu : faq/faq.mf

For those without ftp, it can be received by email from:

fileserv@shsu.edu

by sending the one-line message:

sendme faq.mf

Reference

The METAFONT book, by Donald Ervin Knuth, published by the American Mathematical Soci-
ety and Addison Wesley Publishing Company. First edition, 1986, covers METAFONT 1.0. Later
editions cover METAFONT 2.0 and above. This file is based, except where indicated otherwise,
on the 1986 edition.1

1Opinion: I actually enjoy reading The METAFONT book, whereas The TEXbook confuses me no end.

3

Acknowledgements

Additions and corrections were kindly contributed by:

Bill Alford (bill@phys.anu.edu.au),
Tim A. H. Bell (bhat@mundil.cs.mu.oz.au),
Karl Berry (karl@cs.umb.edu),
Gert W. Bultman (bultman@dgw.rws.nl),
Anita Zanolini Hoover (anita@ravel.udel.edu),
Berthold K. P. Horn (bkph@kauai.ai.mit.edu),
Micha l Jaegermann (ntomczak@vm.ucs.ualberta.ca),

and
David Kastrup (dak@pool.informatik.rwth-aachen.de).

Typesetting was initiated by

Yannis Haralambous (yannis@gat.citilille.fr).

Mistakes remain copyright c© 1993 Geoffrey Tobin.

Motivation

It’s a common experience to have initial (and medial and final :-)) difficulty with running
METAFONT, and not all ‘TEXnicians’ are as familiar with METAFONT as they are with TEX. Still,
nothing ventured, nothing gained. So let’s be of good cheer, and get down to work.

1 What is METAFONT?

METAFONT is a program for making bitmap fonts for use by TEX, its viewers, printer drivers,
and related programs. It interprets a drawing language with a syntax apparently derived in
part from the Algol2 family of programming languages, of which C, C++, Pascal and Modula-2
are members.

The input can be interactive, or from a source file. METAFONT source files are usually
suffixed ‘.mf’.

METAFONT sources can utilize scaling, rotation, reflection, skewing and shifting, and other
complex transformations in obvious and intuitive ways. But that is another story, told (in part)
by The METAFONT book.

METAFONT’s bitmap output is a gf (generic font) file. This may be compressed to an
equivalent pk (packed) font by the auxiliary program GFtoPK.

Why doesn’t METAFONT output pk fonts directly? Firstly, Tomas Rokicki had not invented
pk at the time Donald E. Knuth was writing METAFONT. Secondly, to change METAFONT now
would be too big a change in Knuth’s opinion. (Knuth is a very conservative programmer;
this fact is a two-sided coin.)

2Around 1960, Donald Knuth worked as an Algol compiler designer.

4

gf and pk files are suffixed ‘.*gf’ and ‘.*pk’ respectively, where, in a typical unix install-
ation, the ‘*’ stands for the font resolution. (Resolution will be explained below.) ms-dos
truncates file name suffixes to three characters, so a font suffix ‘.1200gf’ becomes ‘.120’ —
beware of this!

A bitmap is all that’s needed for large-scale proofs, as produced by the GFtoDVI utility, but
for TEX to typeset a font it needs a tfm (TEX Font Metric) file to describe the dimensions,
ligatures and kerns of the font. METAFONT can be told to make a tfm file, by making the
internal variable ‘fontmaking’ positive. Most output device modes (see subsection 3.4 below)
do this.

Remember that TEX reads only the tfm files. The glyphs, or forms of the characters, as
stored in gf or pk font files, do not enter the picture (I mean, are not read) until the dvi drivers
are run.

TEX can scale tfm files. Unfortunately, bitmaps such as gf and pk are not scalable.
However, METAFONT files can be compiled into fonts of arbitrary scale by METAFONT, even by
non-programmers — see subsection 4.5.

Incidentally, properly constructed tfm files are device-independent, so running METAFONT

with different modes normally produces the identical tfm. Dimensions in tfm files are specified
to METAFONT in device independent ‘sharped’ dimensions (commonly suffixed by #), where
a value of 1 corresponds to the dimension of 1pt (typographical point). Most of METAFONT’s
calculations are done with (resolution and device dependent) pixels as units. Care must be taken
by font designers to always calculate unsharped dimensions from sharped ones, and never the
other way round, so as to keep roundoff errors or similar effects from influencing the tfm files
to depend on resolution or device. Although type quality will be influenced only in minuscule
ways, this is one of the more common reasons for checksum errors reported by printer drivers.
Note that the only way to be sure that a TFM file is device-independent is to create the font
in different modes and compare the resulting TFM’s, perhaps using tftopl.

More detailed descriptions of tfm and gf files, and of proof mode, are found in Appendices
F, G, and H, respectively of The METAFONT book.

The TUG dvi Drivers Standard, Level 0, draft 0.05, includes precise definitions of the file
structure of tfm metrics and of gf and pk bitmap fonts. That document is obtainable from
the TEX archive at

ftp.uni-stuttgart.de

where it is currently found as the several files in the directory

soft/tex/dviware/driv-standard/level-0

Related information is contained in the documents in the ‘sister’ directory

soft/tex/dviware/driv-standard/papers

5

2 Getting METAFONT’s Attention

2.1 Typing at METAFONT’s ‘**’ prompt

If you type the name of the METAFONT program alone on the command line:

mf

then mf displays a ‘**’ prompt, which ‘is METAFONT’s way of asking you for an input file name’.
(See The METAFONTbook, Chapter 5: ‘Running METAFONT’.) Thus, to process a METAFONT

file named fred.mf, you may type:

fred

A backslash (‘\’) can also be typed here. This causes all subsequent commands at the
prompt line to be interpreted as in a METAFONT file. (Concerning the backslash, see The META-

FONTbook, Chapter 20: ‘More About Macros’, pages 179 and 180 in the 1986 edition.) Thus
we can respond to the ** prompt with:

\ input fred

or even:

\ ; input fred

The backslash is useful because certain commands are often executed before a METAFONT

file is input. In particular, quality printing (see subsection 3.4 below) requires the METAFONT

command mode, and output magnification (subsection 4.5) employs the mag command. For
example:

\mode=localfont; mag=magstep(1); input fred

To read ms-dos pathnames at the ** prompt, this satisfies METAFONT:

\input \seldom\fred.mf

as does:

d:\seldom\fred.mf

2.2 Typing on the Command Line

Most METAFONT implementations permit you to type METAFONT commands on the command
line, instead of at the ** prompt. (Rather, it is automatically passed to that prompt.)

On ms-dos, type commands as at the ** prompt:

mf \mode=localfont; input myfont10

6

On unix, command shells typically interpret semicolons, backslashes and parentheses spe-
cially, unless they are ’quoted’. So, when typing those characters as part of instructions to
METAFONT on the unix command line, it’s wise to accustom yourself to protecting them with
apostrophes:

mf ’\mode=localfont; input myfont10’

If localfont makes fonts for a 300 dots per inch (dpi) device, this should produce a tfm file,
‘myfont10.tfm’, and a 300 dpi gf font file, ‘myfont10.300gf’. Almost all of the following will
presume a 300 dpi device, and other resolution devices will have appropriately different font file
names.

These command lines are a bit long, very often used, and rather intolerant of mistakes (see
subsection 6.2 below), so you might type the repetitive parts into a unix shell script or an
ms-dos batch file, as appropriate.

In unix, the ** prompt has the advantage that those pesky apostrophes are not needed.
(Indeed, those apostrophes are always wrong at the ** prompt — METAFONT doesn’t understand
them. It would not understand them on the command line either—it’s just that the shell does
not hand them over to METAFONT.) However, for shell scripts (and for batch files in ms-dos),
the command line is a boon.

For the Macintosh, which is not command line based, Tim Bell reports that one port
of METAFONT (by Timothy Murphy <tim@maths.tcd.ie> 22 January 1993) simulates the
command line within the program (using a special THINK C library written just for that).
But what you type goes through some string processing, so you need double ‘\’s. Thus your
example line reads:

mf \\mode=localfont; input myfont10

2.3 ‘Please type another input file name: ’

When METAFONT cannot find the main source file, it doesn’t quit. For example, when I typed
mf fred, METAFONT said:

This is METAFONT ...

**fred

! I can’t find file ‘fred.mf’.

<*> fred

Please type another input file name:

The usual program interrupts (eg, Control-C) don’t work here, and the ‘Please type ...’
prompt does not understand METAFONT commands: it will read only the first word, and insist
on interpreting this as a file name.

Beginners faced with this often wonder how to avoid an endless loop or a reboot, or try
to think of a METAFONT file that they do have in METAFONT’s path. In the latter case, the
canonical name to use is ‘null’, standing for the file ‘null.mf’.

7

In fact, the solution is much easier: on the systems that I have tried, a simple end of file
marker (‘control-Z’ in ms-dos, ‘control-D’ in unix) stops METAFONT in its tracks:

! Emergency stop.

<*> fred

End of file on the terminal!

3 Base files

In versions 2.7 and 2.71, the METAFONT language contains 224 (previous versions had fewer)
primitives, which are the commands preceded by an asterisk in the Index (Appendix I) to
The METAFONT book. From these we can build more complex operations, using macros. In
METAFONT macros have some of the desirable characteristics of functions in other languages.
Collections of macros can be stored in METAFONT source files.

Base files are precompiled internal tables that METAFONT loads faster than it loads the
original METAFONT source files. Thus, they are closely analogous to TEX’s format files.

3.1 The plain base

The plain base provides the commands that The METAFONT book describes. (See Appendix B
of The METAFONTbook, if you have it around — maybe a library has it — I’m learning from
a copy borrowed from the local university’s library.)

When it starts, METAFONT automatically loads3 the plain base. This is usually called
plain.base, or sometimes only (see subsection 3.3 for why this works) mf.base, although for
those systems concerned (such as unix), both file names should really be present.

EmTEX for ms-dos calls the plain base plain.bas, due to filename truncation.

3.2 Loading a Different Base

Suppose that you have a base named joe.base. Typing

mf &joe

or (on unix, where we must either quote or escape the ampersand)

mf \&joe

or responding

&joe

3There are releases of METAFONT that contain the plain base, and so don’t have to load it. However, on
most computers, including personal computers, reading bases is so fast that such a preloaded base is unnecessary.

8

to the ** prompt, omits loading plain base, and loads the joe base instead. Typically, however,
the joe.mf file which originally produced the joe base will have included plain.mf, because
working without the plain base macros would be too cumbersome. (Refer to The META-

FONTbook (1986), Chapter 5: ‘Running METAFONT’, page 35, ‘dangerous bend’ number two.)
The ‘cm’ base, for making the Computer Modern fonts, can be loaded in that way:

mf &cm

Remember to quote the ampersand under unix!

3.3 The Linkage Trick

On systems such as unix where programs can read their own command line name, and where
files may be linked to two or more names, then programs can modify their behavior according
to the name by which they are called. Many unix TEX and METAFONT installations exploit
this in order to load different format and base files, one for each of the various names to which
TEX and METAFONT are linked. Such installations can often be recognised by the presence of
the executable ‘virmf’ in one of the directories in the PATH.

For example, if a base file called ‘third.base’ resides where METAFONT can find it (see
section 4.8 below), then virmf can be linked to third. In unix, a hard link is formed by

ln virmf third

On systems supporting symbolic links, you should make all of these links symbolic, rather
than hard, or else you will have to redo them every time you install a new copy of virmf; see
below. In unix, this is done by

ln -s virmf third

Normally one wants mf to load the plain base, so in such installations one links plain.base
to mf.base:

ln plain.base mf.base

Again, you’d best make that link symbolic. This comment applies for the rest of this section
as well.

As another example, take the ‘cm’ base. In web2c:

ln virmf cmmf

ln cm.base cmmf.base

so that ‘cmmf’ automatically loads ‘cm.base’.
This applies equally to TEX, which is why tex and latex are then links to virtex, tex.fmt

is a link to plain.fmt, and latex.fmt is a link to lplain.fmt:

9

ln virtex tex

ln plain.fmt tex.fmt

ln virtex latex

ln lplain.fmt latex.fmt

Karl Berry’s web2c distribution for unix uses this ‘linkage trick ’.
If you used symbolic links, you can laugh off the following
Warning: This linkage is convenient, but watch out during updates! If mf.base is a hard

link to plain.base, then replacing plain.base with its new version severs the link: mf will
still load mf.base, but it will be the old version! The proper procedure is to remove the old
mf.base, and relink. On unix:

rm mf.base

ln plain.base mf.base

On most unix systems, ln -f will automatically remove the second file (if present) — in this
case, mf.base — before linking.

Alternatively, web2c will update ‘plain.base’ (and ‘plain.fmt’, and so on) for you, if you
tell web2c’s Makefile to

make install

Symbolic links, on systems that have them, are probably the best method of handling updates,
at least when doing them manually. (Consult your system administrator for details.)

3.4 Making a Base; the Local Modes file

The plain base is made from a METAFONT file named plain.mf and, commonly, from some
other file, often called local.mf or modes.mf.

The local/modes file lists printers (and monitors), giving each output device a font-making
mode, containing a description of some refinements that must be made in order to produce
good-looking output. For instance, how to make the characters just dark enough, and how to
make diagonal lines come out sharply.

If you want to make a base, you need a variant of the METAFONT program called ‘inimf’.
(See The METAFONTbook, p 279.) For example, plain.base can be made in unix by typing:

inimf ’plain; input local; dump’

If using the emTEX version of METAFONT for a pc, type:

mf/i plain; input local; dump

10

4 Fonts

4.1 Proof Mode

The purpose of METAFONT is to make fonts. For æsthetically pleasing pk bitmaps, the correct
device mode must be selected.

An obstacle to beware of is that plain METAFONT uses proof mode by default. (The META-

FONTbook, page 270, defines this mode.) That means writing unmagnified font files with a
resolution of 2601.72 dots per inch (dpi); that’s 36 pixels per point. (One point is 1/72.27 of
an inch.) Proof mode does not produce a tfm file.

What good is proof mode, and why is it the default? Proofs are blown up copies of characters
used by font designers to judge whether they like the results of their work. Naturally, proofs
come first, and normal sized character production later — if you’re a font designer.

So there are two clues that proof mode is on: font files with extensions like ‘.2602gf’ (or
on ms-dos, ‘.260’), and the ‘failure’ to produce any tfm file.

On some systems, such as X11, a third clue is that the proof font may be drawn on the
screen — it’s so large, you can’t miss it!

4.2 Localfont Mode

When using a stable font, or when testing the output of a new font, we don’t want proof mode,
we want our local output device’s mode. Usually, METAFONT is installed with a ‘localfont’
assigned in the local/modes file. On our department’s Sun Network, we have assigned

localfont:=CanonCX

We use Karl Berry’s ‘modes.mf’4, which contains modes for many, many devices. We chose the
CanonCX mode because ‘modes.mf’ recommends it for Apple Laserwriters and HP Laserjet II
printers, which we use.

To process a METAFONT source file named ‘myfont10.mf’ for the most usual local device,
specify the local mode to mf before inputting the font name:

\mode=localfont; input myfont10

This should produce a gf font file, ‘myfont10.300gf’ (‘myfont10.300’ in ms-dos), and a tfm
file, ‘myfont10.tfm’.

4.3 Font Naming

By the way, if you modify an existing, say a Computer Modern (cm), font, you must give
it a new name. This is an honest practice, and will avoid confusion.

4Available at ftp.cs.umb.edu in the pub/tex directory.

11

4.4 Using a New Font in TEX

To use a new font in a TEX document, select it specifically. Example: in a TEX macro file, or
in a LaTEX style file, to define \mine as a font-selection command for ‘myfont10.tfm’, say:

\font\mine=myfont10

Then to typeset ‘Mary had a little lamb,’ in the myfont10 font, and then to revert to the
previous font, type

{\mine Mary had a little lamb,}

Note, however, that this will not change the line spacing parameters of TEX as well. If your
lines appear a little too cramped and unevenly spaced vertically, it is very probable that you
need to increase \baselineskip. For LaTEX users, a simple remedy is to just select a larger
font before your own. Also, end your paragraph by an empty line or a \par command before
the closing brace, or your line spacing changes will be cancelled before the paragraph has a
chance of being typeset.

4.5 Magnification (and Resolution)

Now suppose that you want myfont10 to be magnified, say to magstep 1 (magnified by 1.2),
for a ‘jumbo’ printer. Assuming that the local/modes file has a mode for the jumbo printer,
you may then run METAFONT with the following three commands:

\mode=jumbo; mag=magstep(1); input myfont10

to produce ‘myfile10.tfm’ (again!) and a gf font, ‘myfile10.360gf’. On ms-dos, the file
names will be truncated; for example, ‘myfile10.360’.

The ‘360’ is ‘300 * 1.2’, indicating the magnification. A 360 dpi font can be used either as
a magnification 1.2 font on a 300 dpi printer or as a normal sized font on a 360 dpi printer.

Note, however, that the METAFONT language includes special hints for each output device
which clue METAFONT as to the reactions of the output device to pixel-sized minuscule changes.

So for highest quality, you would not even want to mix the fonts for two 300 dpi printers,
unless they share the same mode and most probably the same print engine.

4.6 GFtoPK

TEX uses only the tfm file, which METAFONT will produce if it’s in a font-making mode. (The
METAFONTbook, Appendix F.) Most dvi drivers read the pk font format, but METAFONT makes
a gf (Generic Font) file. So we need also to apply the GFtoPK utility:

gftopk myfile10.300gf

to produce the wanted ‘myfile.300pk’ (or, on ms-dos, ‘myfile.pk’) pk font.

12

4.7 Storing the Fonts

Now we have the fonts, where do we store them? TEX, METAFONT and the various driver
programs are compiled with default locations written in. These can be overridden by certain
environment variables. The names of these variables differ between systems, but on unix they
might, for example, be ‘TEXFONTS’ for the tfm files, and either ‘PKFONTS’ or ‘TEXPKS’
(or both of those) — before searching ‘TEXFONTS’ — for pk fonts. You can find out what
environment variables you now have by typing ‘set’ in ms-dos and ‘env’ in the Bourne shell,
sh, in unix. In the unix C shell, csh, type ‘setenv’.

Micha l Jaegermann notes that on a ‘virgin’ installation — in which everything is in default
directories and no environment variables have yet been set — that won’t succeed. Presumably
we’re talking to system installers now. So, as a first resort:

Read The Manual.

As a last resort, one can discover default values and environment variable names by using a
command like unix’s strings on the executable files. For instance:

strings -6 /bin/virmf | less

(Use ‘more’ or ‘pg’ for paging, if ‘less’ is not available.) Seeking 6-letter names is about right,
as “TEXPKS” has six letters, while strings’ default of four collects too much random noise.
Environment variables are usually in upper case, and their names strongly hint at their purposes.
Default locations may be discovered by looking for path name strings.

Using this advice may show some undocumented names. If you have the program sources,
you may check their purpose. Otherwise, not to worry, the important ones should be self-
evident. As an illustration, here are some environment variable names found by applying
“strings -6” to Rokicki’s dvips:

* DVIPSHEADERS

HOME

* PKFONTS

PRINTER

TEXCONFIG

TEXFONTS

TEXINPUTS

* TEXPACKED

* TEXPICTS

TEXPKS

VFFONTS

The four starred names are not documented by the dvips manual (for version 5.484). In Karl
Berry’s dvipsk, a variant of dvips, DVIPSHEADERS5, PKFONTS and TEXPICTS are documented,
while TEXPACKED is not used.

5In version 5.518b, which is forthcoming.

13

If you want TEX and METAFONT to find files in the current directory (as you almost certainly
do!), then one way is to put ‘.’ into their search paths. (Both unix and ms-dos accept the .

notation for the current directory.) Default search paths are compiled into TEX and METAFONT,
but users can customise the environment variables (see subsection 4.8) that the programs read,
to override the defaults.

METAFONT (as illustrated in section 2 above), as well as the dvi drivers, can also be given full
path specifications for input files. (On most systems, so can TEX, but, as Berthold K. P. Horn
(bkph@kauai.ai.mit.edu) has observed, ms-dos poses the problem that the backslash ‘\’ used
in ms-dos path names is very special in TEX input. However, I’ll leave solving that one to the
TEXackers.)

On the other hand, you may be content with your new font, and you may have write access
to the place where most of the fonts are stored. In that case, copy your font to there. There
will be a place for the tfm files, and another for the pk files. It’s up to you or your local
system administrator(s) to know where these directories are, because their names are very
locale dependent.

4.8 Environment Variables for emTEX and web2c

Environment variables often cause confusion, as they vary unpredictably — sometimes subtly,
sometimes widely — between systems.

EmTEX for ms-dos and web2c for unix are two popular distributions of TEX, METAFONT,
and associated programs. It’s worthwhile therefore to compare their environment variables.

Firstly, the variables used leading up to the production of the dvi file:

TEX, BibTEX, METAFONT and MFjob

Seeking emTEX web2c

TEX Pool file TEXFMT, BTEXFMT TEXPOOL

TEX Formats TEXFMT, BTEXFMT TEXFORMATS

TEX Inputs TEXINPUT TEXINPUTS

TEX Font Metrics TEXTFM TFMFONTS, TEXFONTS

BibTEX bst TEXINPUT BSTINPUTS, TEXINPUTS

BibTEX bib BIBINPUT BIBINPUTS

METAFONT Pool MFBAS, BMFBAS MFPOOL

METAFONT Bases MFBAS, BMFBAS MFBASES

METAFONT Inputs MFINPUT MFINPUTS

MFjob Inputs MFJOB —

The second table compares the environment variables used by emTEX’s dvi drivers with
those for Tomas Rokicki’s portable PostScript driver, dvips.

14

dvi Drivers

Seeking emTEX Drivers dvips

dvi files DVIDRVINPUT current directory

pk Fonts DVIDRVFONTS TEXPKS, PKFONTS

Bitmap Graphics DVIDRVGRAPH —
Virtual Fonts set by /pv option VFFONTS, TEXFONTS

MakeTeXPK — MAKETEXPK

config.ps — TEXCONFIG

ps files — TEXINPUTS

Where two or more variables are listed together, they are searched from left to right. For
example, dvips seeks pk fonts first in TEXPKS, then in PKFONTS. By the way, if no pk fonts can
be found, then dvips uses the tfm files to determine spacing, and leaves the characters blank.

Berry’s dvipsk seeks pk fonts in whichever one of PKFONTS, TEXPKS, GLYPHFONTS and
TEXFONTS — in that order — is set and of the highest priority. If a font cannot be found
via environment variables, then the compile-time system default paths are searched; any lower
priority font path environment variables are ignored — which may also be the behavior of
Rokicki’s dvips, but readers are encouraged to discover the truth for themselves. In addition,
dvipsk seeks gf fonts using the successive environment variables GFFONTS, GLYPHFONTS and
TEXFONTS.

MFjob and MakeTeXPK have a similar function: to create pk fonts from METAFONT files.
When pk fonts are missing, but the METAFONT font sources are available, MFjob can be called
by recent versions (1.4r and above) of the emTEX drivers to create the missing fonts. MakeTeXPK
is called by dvips for the same purpose.

In Berry’s web2c 5.851d6, TEX can be configured to call MakeTeXTFM and MakeTeXTeX,
and METAFONT to call MakeTeXMF, to make missing tfm, TEX, and METAFONT files, respectively.
MakeTeXTFM, like MakeTeXPK, can call METAFONT. Design of MakeTeXTeX and MakeTeXMF are up
to the user’s imagination — Karl says that one possibility is to employ ftp.

5 Some Limitations of METAFONT

METAFONT contains some builtin limitations, some obvious, others less so.
Parts of the following list are most useful to budding programmers, though casual users may

wish to read it to learn whether an error message produced by somebody else’s METAFONT file
is very serious or not.

1. All valid numbers are strictly less than 4096.

2. The METAFONTbook, in ‘Appendix F: Font Metric Information’, warns of one limitation
that I’ve met when processing some fonts.

6Available at ftp.cs.umb.edu in the pub/tex directory.

15

‘At most 15 different nonzero heights, 15 different nonzero depths, and 63 different nonzero
italic corrections7 may appear in a single font. if these limits are exceeded, METAFONT

will change one or more values, by as little as possible, until the restriction holds. A
warning message is issued if such changes are necessary; for example

(some charht values had to be adjusted by as much as 0.12pt)

means that you had too many different nonzero heights, but METAFONT found a way to
reduce the number to at most 15 by changing some of them; none of them had to be
changed by more than 0.12 points. No warning is actually given unless the maximum
amount of perturbation exceeds 1

16
pt.’

Every correct implementation of METAFONT will adjust character box dimensions by the
same amount, giving the same tfm files, so we ignore small perturbations in other people’s
fonts. When designing your own fonts, however, I think it’s courteous to keep within the
limits, so as not to worry inexperienced users.

3. In the addto picture command, withweight only accepts values that round to -3, -2, -1,
+1, +2, or +3. To obtain other pixel weights, you can apply further addto commands.

4. The memory size of the version of METAFONT you use is an evident, implementation
dependent restriction, but it may be, as in TEX, that memory is not enough simply
because, if you’ll pardon my saying so, some of your coding may be seriously inefficient
or logically invalid.

6 What Went Wrong?

The complexity of wrong things far exceeds that of things intended.
References for some of the subsequent points:
The METAFONTbook, chapter 5, ‘Running METAFONT’, contains instructive examples, and

supposedly ‘dangerous’, but actually basic and useful, notes.
In that chapter, and in chapter 27, ‘Recovery from Errors’, Knuth discusses the diagnosis

of METAFONT’s error messages. I find this perhaps the hardest part of the book — if not of
using METAFONT.

Incidentally, METAFONT’s error messages are contained in an ASCII file called ‘mf.pool’.
Reading the pool file can be entertaining.

6.1 Big fonts, but Unwanted

Recently, I found myself accidentally producing fonts with extensions like ‘3122gf’. How?
METAFONT will take anything as an excuse to revert to proof mode.

The ‘3122’ is a magstep 1 proof mode. It’s

(1.2)^1 * 2601.72 = 3122.164 dots per inch.

7Respectively, charht, chardp and charic values.

16

My intention was for METAFONT on a PC to use an HP Laserjet mode in place of proof mode.
However, METAFONT’s command line resembles the law: every stroke of the pen is significant.
What I had forgotten was that on my setup, ‘localfont’ must be explicitly requested.

EmTEX’s METAFONT, with plain.mf, defaults to proof mode. However, I usually want a
local printer’s font-making mode. So to process pics.mf correctly, I need to say:

mf ’\mode=localfont; input pics’

6.2 Consequences of Some Typing Errors on METAFONT’s command line

Small typing errors are so common, and yet undocumented (why are common mistakes not
documented?), that I thought I’d list several that have tripped me up on innumerable occasions.
After all, why reinvent the car crash?

Consider a source file ‘pics.mf’ that contains ‘mag=1200/1000;’, so it is automatically
scaled by 1.2 (ie, by magstep 1). If the target printer has 300 dpi, then a 360 dpi gf font is
wanted.

Here is the gist of what happens for various typing errors, when using emTEX’s ‘mf186’ on
a 286 pc to process ‘pics.mf’.

1. mf186 =⇒ METAFONT will keep prompting for arguments:

**

We can type the contents of the command line here; for example, I can now type ‘pics’.
In fact, even if you use the command line, the .log (‘transcript’) file shows METAFONT

echoing its interpretation of the command line to a ** prompt.

2. mf186 pics =⇒ proof mode:

! Value is too large (5184)

No tfm is produced, and the gf file has resolution 3122 dpi. (3121.72 dpi, to be precise.)

3. mf186 mode=localfont; input pics =⇒ misinterpretation:

! I can’t find file ‘modes=localfont.mf’.

So, ‘modes’ needs that backslash, otherwise mf thinks it’s the start of a source font’s file-
name. Backslash (‘\’) and ampersand (‘&’) are escapes from this standard interpretation
by METAFONT of the first argument. (Ampersand is in fact only a temporary escape, as
METAFONT resumes the mf filename prompting attitude as soon as a base is read.)

4. mf186 \mode=localfont input pics =⇒ weird effect:

17

>> unknown string mode_name1.2

! Not a string

<to be read again>

;

mode_setup-> ...ode)else:mode_name[mode]fi;

l.6 mode_setup

;

Wow! What a difference a semicolon can make!

5. mf186 \mode=localfont pics =⇒ almost nothing happens:

** \mode=localfont pics

*

There’s the echo I mentioned. From the lack of activity, pics evidently needs to be
‘input’.

6. mf186 \mode=localfont; pics =⇒

Same as 5.

So, yes, when the mode is specified, we need ‘input’ before ‘pics’.

7. mf186 &plain \mode=localfont; input pics =⇒

Works.

Just as without the ‘&plain’, it writes a gf file, ‘pics.360gf’, which is correct. (ms-dos
truncates the name to ‘pics.360’.) So, redundancy seems okay. Does it waste time,
though?

6.3 Finding the Fonts

Finding the fonts (*.mf, *.tfm, *.gf, and *.pk) trips up TEX, METAFONT, GFtoPK and the
output drivers continually. ‘pics.tfm’ needs to be put where TEX will look for tfms, so I
needed to ensure that ‘.’ was in the appropriate path environment variable. Similarly for the
METAFONT, gf and pk font files.

Environment variables can be tricky. For instance, emTEX’s font-making automation pro-
gram ‘MFjob’ cannot make fonts in the current directory unless both ‘.’ and ‘..’ are added to
MFINPUT. This was not documented.

Also, some popular TEX output drivers, such as the emTEX drivers on ms-dos and os/2,
and Tomas Rokicki’s ‘dvips’ which has been ported to many systems, make missing fonts
automatically — provided that they can find the necessary METAFONT source files. Again,
making fonts in the current directory can require some tweaking.

18

6.4 MakeTeXPK

On unix, when fonts are missing, dvips calls a Bourne shell script, ‘MakeTeXPK’, which creates
a temporary directory, which it then changes to, before calling METAFONT to make the missing
fonts. The change of directory can cause METAFONT not to find font sources lying in what used
to be the current directory.

Gert W. Bultman (bultman@dgw.rws.nl) has suggested the following modification to
MakeTeXPK:

MFINPUTS=${MFINPUTS}:‘pwd‘; export MFINPUTS

to add the current directory to the search path, before the change to the temporary directory:

cd $TEMPDIR

Micha l Jaegermann (ntomczak@vm.ucs.ualberta.ca) has pointed out that:
‘This will not work very well in a situation when the MFINPUTS variable is not set, and

you rely instead on METAFONT files being in a default location. The problem is that in such
a situation, after an execution of the line above, you will end up with ONLY your ’current
working directory’ in the MFINPUTS path, [which still leaves you without access to the standard
METAFONT files].

‘For the Bourne shell, sh, this line should rather read somewhat8 like:

MFINPUTS=‘pwd‘:${MFINPUTS-/usr/lib/mf/inputs}

export MFINPUTS

which gives you a fallback position. Of course,

/usr/lib/mf/inputs

should be replaced by a default value for the MFINPUTS path.
‘This problem is highly likely to affect budding METAFONT hackers on NeXT, for example.’
Micha l’s suggestion gives priority to METAFONT files in the directory that is current when

MakeTeXPK is called, which is the usual preference. In sh, the ‘$A-B’ construction has the
value of A, if A is defined, and the value of B, otherwise.

Karl Berry advises that for web2c 5.851c and above, a leading or trailing colon in a path
is replaced by the compile-time default path. For web2c he suggests:

if test -z "$MFINPUTS"; then

MFINPUTS=‘pwd‘:

else

MFINPUTS=‘pwd‘:$MFINPUTS:

fi

Test these ideas on your system, to see what is most applicable.
Incidentally, on ms-dos, dvips calls a batch file, ‘MAKETEXP.BAT’, but, in the ms-dos ver-

sions I’ve seen, this lacks the change to a temporary directory that causes the problem that
occurs both in the unix versions of dvips and in emTEX’s MFjob.

8gt: I’ve separated this into two (valid, unix Bourne shell) lines, to fit into the text width of this document.

19

6.5 Strange Paths

METAFONT satisfactorily fills simple closed curves, like ‘O’ and ‘D’, but filling a figure eight, ‘8’,
causes a complaint:

Strange path (turning number is zero)

because METAFONT’s rules for distinguishing inside from outside might or might not give what
you want for an ‘8’, as there is more than one conceivable answer. You can use the ‘positive
turning rule’ for all cases, and also turn off complaints, by setting

turningcheck := 0;

Chapter 13: ‘Drawing, Filling, and Erasing’, and Chapter 27: ‘Recovery from Errors’, discuss
strange paths in greater depth.

Sometimes, when making a perfectly valid font, but in low resolutions, as for previewers
(eg, VGA has 96 dpi), one may get flak about a ‘Strange path’ or ‘Not a cycle’ or something
similar. Don’t be alarmed. Fonts for previewing will still be OK even if not perfect.

Consequently, it is an idea to make low resolution fonts in METAFONT’s nonstopmode.
Examples of fonts that give messages of this nature are the pleasant Pandora, and — from

memory — the commendable Ralf Smith’s Formal Script (rsfs). Everything is fine at higher
resolutions.

Mind you, some fonts provoke sporadic (that is, design size dependent) strange path mes-
sages at 300 dpi (phototypesetter users would consider that low resolution), yet the printed
appearance showed no visible defect.

Why do strange paths occur? One cause is rounding error on relatively coarse grids.
To summarize, if your viewed or printed bitmaps are fine, then you are OK.

7 METAFONT Mail List

Since 10 December 1992, there has been an e-mail discussion list for METAFONT, created:

1. as a means of communication between hooked METAFONTers;

2. as a way to bring the “rest of us” closer to them;

3. as a means to get quick and efficient answers to questions such as:

◦ why do I always get a “.2602gf” file?

◦ what is a “strange path”, and what can I do to avoid it?

◦ is there a way to go from METAFONT to PostScript and vice-versa?

◦ where can I find a Stempel Garamond font written in METAFONT?

◦ what is metaness?

20

4. and finally, as a first step to encourage people to undertake METAFONTing, and start a
new post-Computer Modern era of METAFONT!

To subscribe to this list, send the following two lines to “listserv@ens.fr” on the Internet:

SUBSCRIBE METAFONT <Your name and affiliation>

SET METAFONT MAIL ACK

The address of the list is “metafont@ens.fr” (at the notorious Ecole Normale Superieure
de Paris). Owner of the list is Jacques Beigbeder (“beig@ens.fr”), coordinator is Yannis
Haralambous (“yannis@gat.citilille.fr”). Language of the list is English; intelligent
mottos are encouraged.

8 Conclusion

METAFONT, like TEX and many another ‘portable’ program of any complexity, merits the warn-
ing: ‘Watch out for the first step’.

I hope that a document like this may help to prevent domestic accidents involving META-
FONT, and so contribute to making the task of using and designing meta-fonts an enjoyable one.
My brief experience with METAFONT suggests that it can be so.

All the Best!

21

